Chiral de Rham complex and the half-twisted sigma-model

نویسنده

  • Anton Kapustin
چکیده

On any Calabi-Yau manifold X one can define a certain sheaf of chiral N = 2 superconformal field theories, known as the chiral de Rham complex of X. It depends only on the complex structure of X, and its local structure is described by a simple free field theory. We show that the cohomology of this sheaf can be identified with the infinite-volume limit of the half-twisted sigma-model defined by E. Witten more than a decade ago. We also show that the correlators of the half-twisted model are independent of the Kähler moduli to all orders in worldsheet perturbation theory, and that the relation to the chiral de Rham complex can be violated only by worldsheet instantons. CALT-68-2547

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Cy-lg Correspondence for (0,2) Toric Models

We conjecture a description of the vertex (chiral) algebras of the (0,2) nonlinear sigma models on smooth quintic threefolds. We provide evidence in favor of the conjecture by connecting our algebras to the cohomology of a twisted chiral de Rham sheaf. We discuss CY/LG correspondence in this setting.

متن کامل

2 00 5 Mirror Symmetry in Two Steps : a – I – B

We suggest an interpretation of mirror symmetry for toric varieties via an equivalence of two conformal field theories. The first theory is the twisted sigma model of a toric variety in the infinite volume limit (the A–model). The second theory is an intermediate model, which we call the I–model. The equivalence between the A–model and the I–model is achieved by realizing the former as a deform...

متن کامل

ar X iv : h ep - t h / 05 05 13 1 v 1 1 6 M ay 2 00 5 MIRROR SYMMETRY IN TWO STEPS : A – I – B

We suggest an interpretation of mirror symmetry for toric varieties via an equivalence of two conformal field theories. The first theory is the twisted sigma model of a toric variety in the infinite volume limit (the A–model). The second theory is an intermediate model, which we call the I–model. The equivalence between the A–model and the I–model is achieved by realizing the former as a deform...

متن کامل

On a Twisted De Rham Complex

We show that, given a projective regular function f : X → C on a smooth quasiprojective variety, the corresponding cohomology groups of the twisted de Rham complex (Ω• X , d − df∧) and of the complex (Ω• X , df∧) have the same dimension. We generalize the result to de Rham complexes with coefficients in a mixed Hodge Module.

متن کامل

The BRST reduction of the chiral Hecke algebra

We explore the relationship between de Rham and Lie algebra cohomologies in the finite dimensional and affine settings. In particular, given a ĝκ-module that arises as the global sections of a twisted D-module on the affine flag manifold, we show how to compute its untwisted BRST reduction modulo n(K) using the de Rham cohomology of the restrictions to N(K) orbits. A similar relationship holds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008